

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

ON INTERVAL VALUED INTUITIONISTIC (α,β)-FUZZY HV-SUBMODULES

Arvind Kumar Sinha*, Manoj Kumar Dewangan

*Department of Mathematics NIT Raipur, Chhattisgarh, India. Department of Mathematics NIT Raipur, Chhattisgarh, India.

ABSTRACT

Atanassov introduced the notion of intuitionistic fuzzy sets as a generalization of the notion of fuzzy sets. In this paper we introduce the concept of an interval valued intuitionistic (α, β) -fuzzy H_v-submodule of an H_v-module by using the notion of "belongingness (\in)" and "quasi-coincidence (q)" of fuzzy points with fuzzy sets, where $\alpha \in \{\in, q\}$, $\beta \in \{\in, q, \in \lor q, \in \lor q\}$ and, then we give the basic properties of these notions.

KEYWORDS: Hyperstructure, Hv-module, Fuzzy set, Intuitionistic fuzzy set, Interval valued intuitionistic (α, β) -fuzzy Hv-submodule.

Mathematics Subject Classification: 20N20.

INTRODUCTION

The concept of hyperstructure was introduced in 1934 by Marty [4]. Hyperstructures have many applications to several branches of pure and applied sciences. Vougiouklis [13] introduced the notion of H_{ν} -structures, and Davvaz [1] surveyed the theory of H_{ν} -structures. After the introduction of fuzzy sets by Zadeh [8], there have been a number of generalizations of this fundamental concept. The notion of intuitionistic fuzzy sets introduced by Atanassov [5] is one among them. For more details on intuitionistic fuzzy sets, we refer the reader to [6, 7].

The idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is mentioned in [10], played a vital role to generate some different types of fuzzy subgroups. Bhakat and Das [11, 12] gave the concepts of (α, β) -fuzzy subgroups by using the notion of "belongingness (\in)" and "quasi-coincidence (q)" between a fuzzy point and a fuzzy subgroup, where α , β are any two of $\{ \in ,q, \in \lor q, \in \land q \}$ with $\alpha \neq \in \land q$, and introduced the concept of an ($\in , \in \lor q$)-fuzzy subgroup. In [15] Yuan, Li et al. redefined (α, β) -intuitionistic fuzzy subgroups. M. Asghari-Larimi [9] gave intuitionistic (α, β) -fuzzy H_v-submodules. Basing on [9], in this paper, we introduce the concept of an interval valued intuitionistic (α, β) -fuzzy H_v-submodule of an H_v-module and describe the characteristic properties.

The paper is organized as follows: in section 2 some fundamental definitions on H_v-structures and fuzzy sets are explored, in section 3 we introduce interval valued intuitionistic (α, β) -fuzzy H_v-submodules and establish some useful results.

BASIC DEFINITIONS

We first give some basic definitions for proving the further results.

Definition 2.1 [3] Let X be a non-empty set. A mapping $\mu: X \to [0,1]$ is called a fuzzy set in X. The complement of μ , denoted by μ^c , is the fuzzy set in X given by $\mu^c(x) = 1 - \mu(x) \quad \forall x \in X$.

http://www.ijesrt.com

© International Journal of Engineering Sciences & Research Technology

Definition 2.2 [3] An intuitionistic fuzzy set A in a non-empty set X is an object having the form $A = \{(x, \mu_A(x), \lambda_A(x)) : x \in X\}$, where the functions $\mu_A : X \to [0, 1]$ and $\lambda_A : X \to [0, 1]$ denote the degree of membership and degree of non membership of each element $x \in X$ to the set A respectively and $0 \le \mu_A(x) + \lambda_A(x) \le 1$ for all $x \in X$. We shall use the symbol $A = \{\mu_A, \lambda_A\}$ for the intuitionistic fuzzy set $A = \{(x, \mu_A(x), \lambda_A(x)) : x \in X\}$.

Definition 2.3 [3] Let $A = \{\mu_A, \lambda_A\}$ and $B = \{\mu_B, \lambda_B\}$ be intuitionistic fuzzy sets in X. Then (1) $A \subseteq B \Leftrightarrow \mu_A(x) \leq \mu_B(x)$ and $\lambda_A(x) \leq \lambda_B(x)$, (2) $A^c = \{(x, \lambda_A(x), \mu_A(x)) : x \in X\}$, (3) $A \cap B = \{(x, \min\{\mu_A(x), \mu_B(x)\}, \max\{\lambda_A(x), \lambda_B(x)\}) : x \in X\}$, (4) $A \cup B = \{(x, \max\{\mu_A(x), \mu_B(x)\}, \min\{\lambda_A(x), \lambda_B(x)\}) : x \in X\}$, (5) $\Box A = \{(x, \mu_A(x), \mu_A^c(x)) : x \in X\}$, (6) $\Diamond A = \{(x, \lambda_A^c(x), \lambda_A(x)) : x \in X\}$.

Definition 2.4 [14] Let G be a non-empty set and $*: G \times G \to \wp^*(G)$ be a hyperoperation, where $\wp^*(G)$ is the set of all the non-empty subsets of G. Where $A * B = \bigcup_{a \in A, b \in B} a * b, \forall A, B \subseteq G$.

The * is called weak commutative if $x * y \cap y * x \neq \phi$, $\forall x, y \in G$. The * is called weak associative if $(x * y) * z \cap x * (y * z) \neq \phi$, $\forall x, y, z \in G$. A hyperstructure (G, *) is called an H_{ν} -group if (i) * is weak associative. (ii) a * G = G * a = G, $\forall a \in G$ (Reproduction axiom).

Definition 2.5 [14] An H_v-ring is a system $(R, +, \cdot)$ with two hyperoperations satisfying the ring-like axioms:

- (i) (R,+,·) is an H_v-group, that is,
 ((x+y)+z)∩(x+(y+z)) ≠ Ø ∀x, y ∈ R,
 a+R=R+a=R ∀a∈R;
 (ii) (R,·) is an H_v-semigroup;
 (iii) (·) is weak distributive with respect to (+), that is, for all x, y, z ∈ R,
 (x·(y+z))∩(x·y+x·z) ≠ Ø,
- $((x+y)\cdot z)\cap (x\cdot z+y\cdot z)\neq \phi.$

Definition 2.6 [2] Let R be an H_v-ring. A nonempty subset I of R is called a left (resp., right) H_v-ideal if the following axioms hold:

(i) (*I*,+) is an H_ν-subgroup of (*R*,+),
(ii) *R* · *I* ⊂ *I* (resp., *I* · *R* ⊂ *I*).

Definition 2.7 [2] Let $(R, +, \cdot)$ be an H_{ν} -ring and μ a fuzzy subset of R. Then μ is said to be a left (resp., right) fuzzy H_{ν} -ideal of R if the following axioms hold: (1) min $\{\mu(x), \mu(y)\} \le \inf \{\mu(z) : z \in x + y\} \forall x, y \in R$,

(2) For all x, a ∈ R there exists y ∈ R such that x ∈ a + y and min{µ(a), µ(x)} ≤ µ(y),
(3) For all x, a ∈ R there exists z ∈ R such that x ∈ z + a and min{µ(a), µ(x)} ≤ µ(z),
(4)µ(y) ≤ inf{µ(z): z ∈ x ⋅ y} respectively µ(x) ≤ inf{µ(z): z ∈ x ⋅ y} ∀x, y ∈ R.

Definition 2.8 [2] An intuitionistic fuzzy set $A = \{\mu_A, \lambda_A\}$ in R is called a left (resp., right) intuitionistic fuzzy H_{ν} ideal of R if following axioms hold:

 $(1)\min\{\mu_A(x),\mu_A(y)\} \le \inf\{\mu_A(z): z \in x+y\} \forall x, y \in R,$ all $x, a \in R$ there exists $y, z \in R$ $x \in (a+y) \cap (z+a)$ (2) For such that and $\min\{\mu_A(a), \mu_A(x)\} \le \min\{\mu_A(y), \mu_A(z)\},\$ $(3)\mu_A(y) \le \inf\{\mu_A(z) : z \in x \cdot y\} \text{ respectively } \mu_A(x) \le \inf\{\mu_A(z) : z \in x \cdot y\} \quad \forall x, y \in R,$ (4) sup{ $\lambda_A(z)$: $z \in x + y$ } $\leq \max{\{\lambda_A(x), \mu_A(y)\}} \forall x, y \in R$, $x, a \in R$ there exists $v, z \in R$ such that $x \in (a+y) \cap (z+a)$ (5) For all and $\max\{\lambda_A(y),\lambda_A(z)\} \le \max\{\lambda_A(a),\lambda_A(x)\},\$ (6) sup{ $\lambda_A(z): z \in x \cdot y$ } $\leq \lambda_A(y)$ respectively sup{ $\lambda_A(z): z \in x \cdot y$ } $\leq \lambda_A(x) \quad \forall x, y \in R$.

Definition 2.12 [17] A nonempty set M is called an H_{ν} -module over an H_{ν} -ring R if (M, +) is a weak commutative H_{ν} -group and there exists a map

$$:: R \times M \to \wp^*(M), (r, x) \to r.x \quad \text{Such that for all } a, b \in R \quad \text{and} \quad x, y \in M, \text{ we have} \\ (a.(x+y)) \cap (a.x+a.y) \neq \phi, \\ ((x+y).a) \cap (x.a+y.a) \neq \phi, \\ (a.(b.x)) \cap ((a.b).x) \neq \phi. \end{cases}$$

Note that by using fuzzy sets, we can consider the structure of H_{ν} -module on any ordinary module which is a generalization of a module.

Definition 2.13 [12] A fuzzy set μ in M is called a fuzzy H_v -submodule of M if $(1)\min\{\mu(x), \mu(y)\} \le \inf\{\mu(z): z \in x+y\} \forall x, y \in M$,

(2) For all $x, a \in M$ there exists $y, z \in M$ such that $x \in (a+y) \cap (z+a)$ and

 $\min\{\mu(a),\mu(x)\} \le \inf\{\mu(y),\mu(z)\},\$

 $(3)\mu(y) \le \inf\{\mu(z) : z \in x \cdot y\} \text{ for all } y \in M \text{ and } x \in R.$

Definition 2.14 [16] An intuitionistic fuzzy set $A = \{\mu_A, \lambda_A\}$ in an H_v –module M over an H_v –ring R is said to be an intuitionistic fuzzy H_v -submodule of M if the following axioms hold:

(1) min{ $\mu_A(x), \mu_A(y)$ } \leq inf{ $\mu_A(z) : z \in x + y$ } and max{ $\lambda_A(x), \lambda_A(y)$ } \geq sup{ $\lambda_A(z) : z \in x + y$ } for all $x, y \in M$,

(2) For all $x, a \in M$ there exists $y \in M$ such that $x \in a + y$ and $\min\{\mu_A(a), \mu_A(x)\} \le \mu_A(y)$ and $\max\{\lambda_A(a), \lambda_A(x)\} \ge \lambda_A(y)$,

(3) For all $x, a \in M$ there exists $z \in M$ such that $x \in z + a$ and $\min\{\mu_A(a), \mu_A(x)\} \le \mu_A(z)$ and $\max\{\lambda_A(a), \lambda_A(x)\} \ge \lambda_A(z)$,

 $(4)\mu_A(x) \le \inf\{\mu_A(z) : z \in r \cdot x\} \text{ and } \lambda_A(x) \ge \sup\{\lambda_A(z) : z \in r \cdot x\} \text{ for all } x \in M \text{ and } r \in R.$

Definition 2.9 [12]Let μ be a fuzzy subset of R. If there exist a $t \in (0, 1]$ and an $x \in R$ such that

$$\mu(y) = \begin{cases} t & \text{if } y = x \\ 0 & \text{if } y \neq x \end{cases}$$

Then μ is called a fuzzy point with support x and value t and is denoted by x_t .

Definition 2.10 [12] Let μ be a fuzzy subset of R and x_t be a fuzzy point. (1) If $\mu(x) \ge t$, then we say x_t

belongs to μ , and write $x_t \in \mu$.

(2) If $\mu(x)+t>1$, then we say x_t is quasi-coincident with μ , and write $x_tq\mu$.

- $(3)x_t \in \lor q\mu \Leftrightarrow x_t \in \mu \text{ or } x_t q\mu..$
- $(4)x_t \in \land q\mu \Leftrightarrow x_t \in \mu \text{ and } x_tq\mu.$

In what follows, unless otherwise specified, α and β will denote any one of \in , $q, \in \lor q$ or $\in \land q$ with $\alpha \neq \in \land q$, which was introduced by Bhakat and Das [9].

By an interval number \tilde{a} we mean an interval $\left[a^{-}, a^{+}\right]$ where $0 \le a^{-} \le a^{+} \le 1$. The set of all interval numbers is denoted by D[0,1]. We also identify the interval [a,a] by the number $a \in [0,1]$. For the interval numbers $\tilde{a}_i = \left\lceil a_i^-, a_i^+ \right\rceil \in D[0,1], i \in I$, we define $\max\left\{\tilde{a}_{i},\tilde{b}_{i}\right\} = \left[\max\left(a_{i}^{-},b_{i}^{-}\right),\max\left(a_{i}^{+},b_{i}^{+}\right)\right],$ $\min\left\{\tilde{a}_i, \tilde{b}_i\right\} = \left[\min\left(a_i^-, b_i^-\right), \min\left(a_i^+, b_i^+\right)\right],$ $\inf \tilde{a}_i = \left[\bigwedge_{i \in I} a_i^-, \bigwedge_{i \in I} a_i^+\right], \sup \tilde{a}_i = \left[\bigvee_{i \in I} a_i^-, \bigvee_{i \in I} a_i^+\right]$ and put $(1)\tilde{a}_1 \leq \tilde{a}_2 \Leftrightarrow a_1^- \leq a_2^- \text{ and } a_1^+ \leq a_2^+,$ $(2)\tilde{a}_1 = \tilde{a}_2 \Leftrightarrow a_1^- = a_2^- \text{ and } a_1^+ = a_2^+,$ $(3)\tilde{a}_1 < \tilde{a}_2 \Leftrightarrow \tilde{a}_1 \leq \tilde{a}_2 \text{ and } \tilde{a}_1 \neq \tilde{a}_2,$ $(4)k\tilde{a} = \lceil ka^{-}, ka^{+} \rceil$, whenever $0 \le k \le 1$. It is clear that $(D[0,1], \leq, \lor, \land)$ is a complete lattice with 0 = [0,0] as least element and 1 = [1,1] as greatest element. By an interval valued fuzzy set F on X we mean the set $F = \{ (x, [\mu_F^-(x), \mu_F^+(x)]) : x \in X \}$. Where μ_F^- and μ_F^+ are fuzzy subsets of X such that $\mu_F^-(x) \le \mu_F^+(x)$ for all $x \in X$. Put $\tilde{\mu}_F(x) = \left\lceil \mu_F^-(x), \mu_F^+(x) \right\rceil$. Then $F = \left\{ \left(x, \tilde{\mu}_F(x) \right) : x \in X \right\}, \text{ where } \tilde{\mu}_F : X \to D[0,1].$ If A, B are two interval valued fuzzy subsets of X, then we define

 $A \subseteq B$ if and only if for all $x \in X$, $\mu_A^-(x) \le \mu_B^-(x)$ and $\mu_A^+(x) \le \mu_B^+(x)$,

A = B if and only if for all $x \in X$, $\mu_A^-(x) = \mu_B^-(x)$ and $\mu_A^+(x) = \mu_B^+(x)$.

[Sinha*, 4.(7): July, 2015]

Also, the union, intersection and complement are defined as follows: let A; B be two interval valued fuzzy subsets of X, then

$$A \cup B = \left\{ \left(x, \left[\max \left\{ \mu_{A}^{-}(x), \mu_{B}^{-}(x) \right\}, \max \left\{ \mu_{A}^{+}(x), \mu_{B}^{+}(x) \right\} \right] \right\} : x \in X \right\},\$$

$$A \cap B = \left\{ \left(x, \left[\min \left\{ \mu_{A}^{-}(x), \mu_{B}^{-}(x) \right\}, \min \left\{ \mu_{A}^{+}(x), \mu_{B}^{+}(x) \right\} \right] \right\} : x \in X \right\},\$$

$$A^{c} = \left\{ \left(x, \left[\left\{ 1 - \mu_{A}^{-}(x), 1 - \mu_{A}^{+}(x) \right\} \right] \right\} : x \in X \right\}.$$

According to Atanassov an interval valued intuitionistic fuzzy set on X is defined as an object of the form $A = \{(x, \tilde{\mu}_A(x), \tilde{\lambda}_A(x)) : x \in X\}$, where $\tilde{\mu}_A(x)$ and $\tilde{\lambda}_A(x)$ are interval valued fuzzy sets on X such that $0 \le \sup \tilde{\mu}_A(x) + \sup \tilde{\lambda}_A(x) \le 1$ for all $x \in X$.

For the sake of simplicity, in the following such interval valued intuitionistic fuzzy sets will be denoted by $A = (\tilde{\mu}_A, \tilde{\lambda}_A)$.

Interval Valued Intuitionistic (α, β) -fuzzy Hv-submodules

In this section we give the definition of interval valued intuitionistic (α, β) -fuzzy Hv-submodule and prove some related results.

Definition 3.1 An interval valued intuitionistic fuzzy set $A = {\tilde{\mu}_A, \tilde{\lambda}_A}$ in M is called an interval valued intuitionistic (α, β) -fuzzy H_v -submodule of M if for all $t, r \in (0, 1]$,

$$\begin{array}{ll} (1) \forall x, y \in M, & x_t \alpha \tilde{\mu}_A, y_r \alpha \tilde{\mu}_A \Longrightarrow z_{t \wedge r} \beta \tilde{\mu}_A \text{ for all } z \in x + y, \\ (2) \forall x, a \in M, & x_t \alpha \tilde{\mu}_A, a_r \alpha \tilde{\mu}_A \Longrightarrow (y \wedge z)_{t \wedge r} \beta \tilde{\mu}_A \text{ for some } y, z \in M \text{ with } x \in (a + y) \cap (z + a), \\ (3) \forall x, y \in M, & y_t \alpha \tilde{\mu}_A \Longrightarrow z_t \beta \tilde{\mu}_A \text{ for all } z \in x \cdot y, \\ (4) \forall x, y \in M, & x_t \overline{\alpha} \tilde{\lambda}_A, y_r \overline{\alpha} \tilde{\lambda}_A \Longrightarrow z_{t \wedge r} \overline{\beta} \tilde{\lambda}_A \text{ for all } z \in x + y, \\ (5) \forall x, a \in M, & x_t \overline{\alpha} \tilde{\lambda}_A, a_r \overline{\alpha} \tilde{\lambda}_A \Longrightarrow (y \wedge z)_{t \wedge r} \overline{\beta} \tilde{\lambda}_A \text{ for some } y, z \in M \text{ with } x \in (a + y) \cap (z + a), \\ (6) \forall x, y \in M, & y_t \overline{\alpha} \tilde{\lambda}_A \Longrightarrow z_{t \wedge r} \overline{\beta} \tilde{\lambda}_A \text{ for all } z \in x \cdot y. \end{array}$$

Lemma 3.2 Let $A = {\tilde{\mu}_A, \tilde{\lambda}_A}$ be an interval valued intuitionistic fuzzy set in M. Then for all $x \in M$ and $r \in (0, 1]$, we have

(1)
$$x_t q \tilde{\mu}_A \Leftrightarrow x_t \in \tilde{\mu}_A^c$$
.
(2) $x_t \in \lor q \tilde{\mu}_A \Leftrightarrow x_t \in \land q \tilde{\mu}_A^c$

Proof. (1) Let $x \in M$ and $r \in (0, 1]$. Then, we have

$$x_{t}q\tilde{\mu}_{A} \Leftrightarrow \tilde{\mu}_{A}(x) + t > 1$$
$$\Leftrightarrow 1 - \tilde{\mu}_{A}(x) < t$$
$$\Leftrightarrow \tilde{\mu}_{A}^{c}(x) < t$$
$$\Leftrightarrow x_{t} \in \tilde{\mu}_{A}^{c}.$$

http://www.ijesrt.com

© International Journal of Engineering Sciences & Research Technology

(2) Let $x \in M$ and $r \in (0, 1]$. Then, we have

$$\begin{aligned} x_t &\in \lor q \tilde{\mu}_A \Leftrightarrow x_t \in \tilde{\mu}_A \text{ or } x_t q \tilde{\mu}_A \\ &\Leftrightarrow \tilde{\mu}_A(x) \ge t \text{ or } \tilde{\mu}_A(x) + t > 1 \\ &\Leftrightarrow 1 - \tilde{\mu}_A^c(x) \ge t \text{ or } 1 - \tilde{\mu}_A^c(x) + t > 1 \\ &\Leftrightarrow x_t \overline{q} \, \tilde{\mu}_A^c \text{ or } x_t \overline{\in} \tilde{\mu}_A^c \\ &\Leftrightarrow x_t \overline{e} \wedge q \tilde{\mu}_A^c. \end{aligned}$$

Theorem 3.3 If $A = \{\tilde{\mu}_A, \tilde{\lambda}_A\}$ is an interval valued intuitionistic (\in, \in) -fuzzy H_v -submodule of M then $A = \{\tilde{\mu}_A, \tilde{\lambda}_A\}$ is an interval valued intuitionistic fuzzy H_v -submodule of M.

Proof Condition (1). Let $x, y \in M$ and $\tilde{\mu}_A(x) \wedge \tilde{\mu}_A(y) = t$. Then $x_t, y_t \in \tilde{\mu}_A$. By condition (1) of definition 3.1, we have $z_t \in \tilde{\mu}_A$, $\forall z \in x + y$, and so $\tilde{\mu}_A(z) \ge t$, $\forall z \in x + y$. Consequently $\tilde{\mu}_A(x) \wedge \tilde{\mu}_A(y) = t \le \bigwedge_{z \in x + y} \tilde{\mu}_A(z)$ for all $x, y \in M$.

Condition (2). Now let $x, a \in M$ and $\tilde{\mu}_A(x) \wedge \tilde{\mu}_A(a) = t$. Then $x_t, a_t \in \tilde{\mu}_A$. It follows from condition (2) of definition 3.1 that $(y \wedge z)_t \in \tilde{\mu}_A$, for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$. Thus $y_t, z_t \in \tilde{\mu}_A$, for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$. Thus $y, z \in \tilde{\mu}_A$, for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$. So, for all $x, a \in M$, there exist $y, z \in M$ such that $x \in (a+y) \cap (z+a)$ and $\tilde{\mu}_A(x) \wedge \tilde{\mu}_A(a) = t \leq \tilde{\mu}_A(y) \wedge \tilde{\mu}_A(z)$.

Condition (3). Let $x, y \in M$ and $\tilde{\mu}_A(y) = t$. Thus $y_t \in \tilde{\mu}_A$. From condition (3) of definition 3.1, we have $z_t \in \tilde{\mu}_A$ for all $z \in x \cdot y$, and so $\tilde{\mu}_A(z) \ge t$ for all $z \in x \cdot y$. This proves that $\tilde{\mu}_A(y) = t \le \bigwedge_{z \in x \cdot y} \tilde{\mu}_A(z)$ for all $x, y \in M$.

Condition (4). Let $x, y \in M$ and $\tilde{\lambda}_A(x) \lor \tilde{\lambda}_A(y) = s$. If s = 1, then $\tilde{\lambda}_A(z) \le 1 = s$ for all $z \in x + y$. It is easy to see that $\bigvee_{z \in x \cdot y} \tilde{\lambda}_A(z) \le \tilde{\lambda}_A(x) \lor \tilde{\lambda}_A(y)$ for all $x, y \in M$. If s < 1 there exists a $t \in (0, 1]$ such that $\tilde{\lambda}_A(x) \lor \tilde{\lambda}_A(y) = s < t$. Then $x_t, y_t \in \tilde{\lambda}_A$. By condition (4) of definition 3.1, we have $z_t \in \tilde{\lambda}_A$, $\forall z \in x + y$ and so $\tilde{\lambda}_A(z) < t$. Consequently $\bigvee_{z \in x \cdot y} \tilde{\lambda}_A(z) \le \tilde{\lambda}_A(x) \lor \tilde{\lambda}_A(y)$ for all $x, y \in M$.

Condition (5). Now let $x, a \in M$ and $\tilde{\lambda}_A(x) \lor \tilde{\lambda}_A(a) = s$. If s < 1, there exists a $t \in (0, 1]$ such that $\tilde{\lambda}_A(x) \lor \tilde{\lambda}_A(a) = s < t$. Then $x_t, a_t \in \tilde{\lambda}_A$. By condition (5) of definition 3.1, we have $(y \land z)_t \in \tilde{\lambda}_A$ for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$. Hence $\tilde{\lambda}_A(y) < t$ and $\tilde{\lambda}_A(z) < t$. Thus $\tilde{\lambda}_A(y) \lor \tilde{\lambda}_A(z) < t$. This implies that for all $x, a \in M$, there exist $y, z \in M$ such that $x \in (a+y) \cap (z+a)$ and $\tilde{\lambda}_A(y) \le \tilde{\lambda}_A(x) \lor \tilde{\lambda}_A(a)$. If s = 1 the proof is obvious.

Condition (6). Let $x, y \in M$ and $\tilde{\lambda}_A(y) = s$. If s < 1, there exists a $t \in (0, 1]$ such that $\tilde{\lambda}_A(y) = s < t$. Thus $y_t \in \tilde{\lambda}_A$. From condition (6) of definition 3.1, we have $z_t \in \tilde{\lambda}_A$ for all $z \in x \cdot y$, and so $\tilde{\lambda}_A(z) < t$ for all $z \in x \cdot y$. Then $\tilde{\lambda}_A(z) < \tilde{\lambda}_A(y)$. This proves that $\bigvee_{z \in x \cdot y} \tilde{\lambda}_A(z) \le \tilde{\lambda}_A(y)$, for all $x, y \in R$. If s = 1 the proof is obvious.

Theorem 3.4 If $A = {\tilde{\mu}_A, \tilde{\lambda}_A}$ is an intuitionistic $(\in, \in \lor q)$ and $(\in, \in \land q)$ -fuzzy H_v -submodule of M then $A = {\tilde{\mu}_A, \tilde{\lambda}_A}$ is an intuitionistic fuzzy H_v -submodule of M. **Proof** The proof is similar to the proof of Theorem 3.3.

Theorem 3.5 If $\Box A = \{\tilde{\mu}_A, \tilde{\mu}_A^c\}$ is an interval valued intuitionistic (α, β) -fuzzy H_v -submodule of M if and only if $\Box A = \{\tilde{\mu}_A, \tilde{\mu}_A^c\}$ is an interval valued intuitionistic (α', β') -fuzzy H_v -submodule of M, where $\alpha \in \{\in, q\}$ and $\beta \in \{\in, q, \in \lor q, \in \land q\}$.

Proof We only prove the case of $(\alpha, \beta) = (\in, \in \lor q)$. The others are analogous. Let $\Box A = \{\tilde{\mu}_A, \tilde{\mu}_A^c\}$ be an intuitionistic $(\in, \in \lor q)$ -fuzzy H_v -submodule of M.

Condition (1). Let $x, y \in M$ and $t, r \in (0, 1]$ be such that $x_t, y_r q \tilde{\mu}_A$. It follows from Lemma 3.2 that $x_t, y_r \in \tilde{\mu}_A^c$. Since $\tilde{\mu}_A^c$ is an anti $(\in, \in \lor q)$ -fuzzy H_v -submodule of M. Thus by condition (4) of definition 3.1, we have $z_{t \wedge r} \in \lor q \tilde{\mu}_A^c$ for all $z \in x + y$. By Lemma 3.2, this is equivalence with $z_{t \wedge r} \in \land q \tilde{\mu}_A$ for all $z \in x + y$. Thus condition of (1) of definition 3.1 is valid.

Condition (2). Suppose that $x, a \in M$ and $t, r \in (0, 1]$ be such that $x_t, a_r q \tilde{\mu}_A$. By Lemma 3.2, we have $x_t, a_r q \tilde{\mu}_A$ iff $x_t, a_r \in \tilde{\mu}_A^c$. By hypotheses, $\tilde{\mu}_A^c$ is an anti $(\in, \in \lor q)$ -fuzzy H_v -submodule of M. Thus by condition (5) of definition 3.1, we have $(y \land z)_{t \land r} \in \lor q \tilde{\mu}_A^c$, for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$. This is equivalence with $y_{t \land r} \in \lor q \tilde{\mu}_A^c$ and $z_{t \land r} \in \lor q \tilde{\mu}_A^c$, for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$. By Lemma 3.2, it is easy to see that $y_{t \land r} \in \land q \tilde{\mu}_A$ and $z_{t \land r} \in \land q \tilde{\mu}_A$, for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$. By if and only if $(y \land z)_{t \land r} \in \land q \tilde{\mu}_A$, for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$ if and only if $(y \land z)_{t \land r} \in \land q \tilde{\mu}_A$, for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$. Thus condition of (2) of definition 3.1 is valid.

Condition (3). Let $x, y \in M$ and $t \in (0, 1]$ be such that $y_t q \tilde{\mu}_A$. It follows from Lemma 3.2 that $y_t \in \tilde{\mu}_A^c$. Since $\Box A = \{\tilde{\mu}_A, \tilde{\mu}_A^c\}$ is an intuitionistic $(\in, \in \lor q)$ -fuzzy H_v -submodule of M. Thus by condition (6) of definition 3.1, we have $z_t \in \lor q \tilde{\mu}_A^c$ for all $z \in x \cdot y$. It is equivalence with $z_t \in \land q \tilde{\mu}_A$ for all $z \in x \cdot y$. Which verify conditions (3) of definition 3.1.

Condition (4). Let $x, y \in M$ and $t, r \in (0, 1]$ be such that $x_t, y_r \bar{q} \tilde{\mu}_A^c$. It follows from Lemma 3.2 that $x_t, y_r \bar{q} \tilde{\mu}_A^c$ iff $x_t, y_r \in \tilde{\mu}_A$. Since $\Box A = \{\tilde{\mu}_A, \tilde{\mu}_A^c\}$ is an intuitionistic $(\in, \in \lor q)$ -fuzzy H_v -submodule of M. Thus by

condition (1) of definition 3.1, we have $z_{t \wedge r} \in \bigvee q \tilde{\mu}_A$ for all $z \in x + y$. By Lemma 3.2, this is equivalence with $z_{t \wedge r} \in \bigwedge q \tilde{\mu}_A^c$ for all $z \in x + y$. Thus condition of (4) of definition 3.1 is valid.

Condition (5). Suppose that $x, a \in M$ and $t, r \in (0, 1]$ be such that $x_t, a_r \overline{q} \tilde{\mu}_A^c$. This is equivalence with $x_t, a_r \in \tilde{\mu}_A$. By hypotheses, $\tilde{\mu}_A$ is an $(\in, \in \lor q)$ -fuzzy H_v -submodule of M. Thus by condition (2) of definition 3.1, we have $(y \land z)_{t \land r} \in \lor q \tilde{\mu}_A$, for some $y, z \in M$ with $x \in (a + y) \cap (z + a)$, and so $y_{t \land r} \in \lor q \tilde{\mu}_A$, and $z_{t \land r} \in \lor q \tilde{\mu}_A$, for some $y, z \in M$ with $x \in (a + y) \cap (z + a)$. It follows from Lemma 3.2 that $y_{t \land r} \in \lor q \tilde{\mu}_A^c$ and $z_{t \land r} \in \lor q \tilde{\mu}_A^c$ for some $y, z \in M$ with $x \in (a + y) \cap (z + a)$ if and only if $(y \land z)_{t \land r} \in \lor q \tilde{\mu}_A^c$, for some $y, z \in M$ with $x \in (a + y) \cap (z + a)$ if and only if $(y \land z)_{t \land r} \in \lor q \tilde{\mu}_A^c$, for some $y, z \in M$ with $x \in (a + y) \cap (z + a)$ if and only if $(y \land z)_{t \land r} \in \lor q \tilde{\mu}_A^c$, for some $y, z \in M$ with $x \in (a + y) \cap (z + a)$. Thus condition of (5) of definition 3.2 is valid.

Condition (6). Let $x, y \in M$ and $t \in (0, 1]$ be such that $y_t \overline{q} \, \tilde{\mu}_A^c$. Then, we have $y_t \in \tilde{\mu}_A$. Since $\Box A = \left\{ \tilde{\mu}_A, \, \tilde{\mu}_A^c \right\}$ is an interval valued intuitionistic $(\in, \in \lor q)$ -fuzzy H_v -submodule of M. Thus by condition (3) of definition 3.1, we have $z_t \in \lor q \, \tilde{\mu}_A$ for all $z \in x \cdot y$. It is equivalence with $z_t \in \land q \, \tilde{\mu}_A^c$ for all $z \in x \cdot y$. Which verify conditions (6) of definition 3.1.

Theorem 3.6 If $\Diamond A = \{ \tilde{\lambda}_A^c, \tilde{\lambda}_A \}$ is an interval valued intuitionistic (α, β) -fuzzy H_v -submodule of M if and only if $\Diamond A = \{ \tilde{\lambda}_A^c, \tilde{\lambda}_A \}$ is an interval valued intuitionistic (α', β') -fuzzy H_v -submodule of M, where $\alpha \in \{ \in, q \}$ and $\beta \in \{ \in, q, \in \lor q, \in \land q \}$.

Proof The proof is similar to the proof of Theorem 3.5.

Theorem 3.7 If $A = \{\tilde{\mu}_A, \tilde{\lambda}_A\}$ is an interval valued intuitionistic (α, β) -fuzzy H_v -submodule of M if and only if $\tilde{\mu}_A$ is an (α, β) -fuzzy H_v -submodule of M and $\tilde{\lambda}_A^c$ is an (α', β') -fuzzy H_v -submodule of M, where $\alpha \in \{\in, q\}$ and $\beta \in \{\in, q, \in \lor q, \in \land q\}$.

Proof We only prove the case of $(\alpha, \beta) = (\in, \in \lor q)$. The others are analogous. It is sufficient to show that, $\tilde{\lambda}_A^c$ is an $(q, \in \land q)$ -fuzzy H_v -submodule of M if and only if $\tilde{\lambda}_A$ is an anti $(\in, \in \lor q)$ -fuzzy H_v -submodule of M. This is true, because $x_t q \tilde{\lambda}_A \Leftrightarrow x_t \in \tilde{\lambda}_A^c$ and $x_t \in \land q \tilde{\lambda}_A \Leftrightarrow x_t \in \lor q \tilde{\lambda}_A^c$, $\forall x \in M$ and $t \in (0, 1]$.

REFERENCES

- B. Davvaz, A brief survey of the theory of H_v-structures, in: Proceedings of the 8th International Congress on AHA, Greece 2002, Spanids Press, 2003, pp. 39-70.
- [2] B. Davvaz, W. A. Dudek, Intuitionistic fuzzy H_{ν} -ideals, International Journal of Mathematics and Mathematical Sciences, Volume 2006, Pages 1-11.
- [3] B. Davvaz, W. A. Dudek, Y. B. Jun, Intuitionistic fuzzy H_v-submodules, Inform. Sci. 176 (2006) 285-300.
- [4] F. Marty, Sur une generalization de la notion de group, in: 8th congress Math.Skandenaves, Stockholm, 1934, pp. 45-49.
- [5] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.
- [6] K. T. Atanassov, Intuitionistic fuzzy sets: Theory and Applications, Studies in fuzziness and soft computing, 35, Heidelberg, New York, Physica-Verl., 1999.

http://www.ijesrt.com

© International Journal of Engineering Sciences & Research Technology

- [7] K. T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61, (1994) 137-142.
- [8] L. A. Zadeh, Fuzzy sets, Inform. And Control 8 (1965) 338-353.
- [9] M. Asghari-Larimi, Intuitionistic (α , β)-Fuzzy H_v-Submodules, J. Math. Comput. Sci. 2 (2012), No. 1, 1-14.
- [10] P. M. Pu and Y. M. Liu, Fuzzy topology: Neighourhood structure of a fuzzy point and Moore-Smooth convergence, J. Math. Anal. Appl., 76 (1980) 571-599.
- [11] S. K. Bhakat, P. Das, $(\in, \in \lor q)$ -fuzzy subgroups, Fuzzy Sets and Systems, 80 (1996) 359-368.
- [12] S. K. Bhakat, P. Das, On the definition of a fuzzy subgroup, Fuzzy Sets and Systems, 51 (1992) 235-241.
- [13] T. Vougiouklis, A new class of hyperstructures, J. Combin. Inf. System Sci., to appear.
- [14] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, Florida, 1994.
- [15] X. H. Yuan, H. X. Li and E. S. Lee, On the definition of the intuitionistic fuzzy subgroups, Computers and Mathematics with Applications, 59 (2010) 3117-3129.
- [16] J. Zhan, B. Davvaz, P. Corsini, On Intuitionistic (S, T)-fuzzy H_v -submodules of Hv-Modules, Southeast Asian Bulletin of Mathematics 36 (2012) 589-601.
- [17] B. Davvaz, W. A. Dudek, Intuitionistic fuzzy H_{ν} -ideals, International Journal of Mathematics and Mathematical Sciences, 2006, 1-11.