

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

ON INTERVAL VALUED INTUITIONISTIC (α,β)-FUZZY HV-SUBMODULES

Arvind Kumar Sinha*, Manoj Kumar Dewangan

*Department of Mathematics NIT Raipur, Chhattisgarh, India. Department of Mathematics NIT Raipur, Chhattisgarh, India.

ABSTRACT

Atanassov introduced the notion of intuitionistic fuzzy sets as a generalization of the notion of fuzzy sets. In this paper we introduce the concept of an interval valued intuitionistic (α, β) -fuzzy H_v-submodule of an H_v-module by using the notion of "belongingness (ϵ) " and "quasi-coincidence (q) " of fuzzy points with fuzzy sets, where $\alpha \in \{\epsilon, q\}$, $\beta \in \{\epsilon, q, \epsilon \vee q, \epsilon \wedge q\}$ and, then we give the basic properties of these notions.

KEYWORDS: Hyperstructure, Hv-module, Fuzzy set, Intuitionistic fuzzy set, Interval valued intuitionistic (α, β) -fuzzy Hv-submodule.

Mathematics Subject Classification: 20N20.

INTRODUCTION

The concept of hyperstructure was introduced in 1934 by Marty [4]. Hyperstructures have many applications to several branches of pure and applied sciences. Vougiouklis [13] introduced the notion of H*v*-structures, and Davvaz [1] surveyed the theory of H*v*-structures. After the introduction of fuzzy sets by Zadeh [8], there have been a number of generalizations of this fundamental concept. The notion of intuitionistic fuzzy sets introduced by Atanassov [5] is one among them. For more details on intuitionistic fuzzy sets, we refer the reader to [6, 7].

The idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is mentioned in [10], played a vital role to generate some different types of fuzzy subgroups. Bhakat and Das [11, 12] gave the concepts of (α, β) -fuzzy subgroups by using the notion of "belongingness (\in) " and "quasi-coincidence (q) " between a fuzzy point and a fuzzy subgroup, where α , β are any two of $\{\in, q, \in \vee q, \in \wedge q\}$ with $\alpha \neq \in \wedge q$, and introduced the concept of an (\in, ∞) \vee q)-fuzzy subgroup. In [15] Yuan, Li et al. redefined (α,β) -intuitionistic fuzzy subgroups. M. Asghari-Larimi [9] gave intuitionistic (α, β) -fuzzy H_v-submodules. Basing on [9], in this paper, we introduce the concept of an interval valued intuitionistic (α, β) -fuzzy H_v-submodule of an H_v-module and describe the characteristic properties.

The paper is organized as follows: in section 2 some fundamental definitions on H*v*-structures and fuzzy sets are explored, in section 3 we introduce interval valued intuitionistic (α, β) -fuzzy H_v-submodules and establish some useful results.

BASIC DEFINITIONS

We first give some basic definitions for proving the further results.

Definition 2.1 [3] Let X be a non-empty set. A mapping $\mu: X \to [0,1]$ is called a fuzzy set in X. The complement of μ , denoted by μ^c , is the fuzzy set in X given by $\mu^c(x) = 1 - \mu(x) \quad \forall x \in X$.

Definition 2.2 [3] An intuitionistic fuzzy set A in a non-empty set X is an object having the form $A = \{(x, \mu_A(x), \lambda_A(x)) : x \in X\}$, where the functions $\mu_A : X \to [0,1]$ and $\lambda_A : X \to [0,1]$ denote the degree of membership and degree of non membership of each element $x \in X$ to the set A respectively and $0 \le \mu_A(x) + \lambda_A(x) \le 1$ for all $x \in X$. We shall use the symbol $A = {\mu_A, \lambda_A}$ for the intuitionistic fuzzy set ${A} = \{ (x, \mu_A(x), \lambda_A(x)) : x \in X \}.$

Definition 2.3 [3] Let $A = {\mu_A, \lambda_A}$ and $B = {\mu_B, \lambda_B}$ be intuitionistic fuzzy sets in X. Then (1) $A \subseteq B \Leftrightarrow \mu_A(x) \le \mu_B(x)$ and $\lambda_A(x) \le \lambda_B(x)$, $(2) A^c = \{ (x, \lambda_A(x), \mu_A(x)) : x \in X \},\$ $(3) A \cap B = \{ (x, \min\{\mu_A(x), \mu_B(x)\}, \max\{\lambda_A(x), \lambda_B(x)\}) : x \in X \},$ $(4) A \cup B = \{ (x, \max\{\mu_A(x), \mu_B(x)\}, \min\{\lambda_A(x), \lambda_B(x)\}) : x \in X \},$ (5) $\Box A = \{(x, \mu_A(x), \mu_A^c(x)) : x \in X\},\$ (6) $\Diamond A = \left\{ (x, \lambda_A^c(x), \lambda_A(x)) : x \in X \right\}.$

Definition 2.4 [14] Let G be a non–empty set and $\ast: G \times G \to \wp^*(G)$ be a hyperoperation, where $\wp^*(G)$ is the set of all the non-empty subsets of G. Where $A * B = \bigcup_{a \in A, b \in B} a * b$, $\forall A, B \subseteq G$.

The * is called weak commutative if $x * y \cap y * x \neq \phi$, $\forall x, y \in G$. The $*$ is called weak associative if $(x * y) * z \cap x * (y * z) \neq \emptyset$, $\forall x, y, z \in G$. A hyperstructure (G, \ast) is called an H_v–group if (i) * is weak associative. (ii) $a * G = G * a = G$, $\forall a \in G$ (Reproduction axiom).

Definition 2.5 [14] An H_{*v*}-ring is a system $(R, +, \cdot)$ with two hyperoperations satisfying the ring-like axioms:

- (i) $(R, +, \cdot)$ is an H_v-group, that is, $((x+y)+z) \cap (x+(y+z)) \neq \phi \quad \forall x, y \in R$ $a+R=R+a=R \quad \forall a \in R;$ (ii) (R, \cdot) is an H_v-semigroup; (iii) (\cdot) is weak distributive with respect to (+), that is, for all $x, y, z \in R$, $(x \cdot (y + z)) \cap (x \cdot y + x \cdot z) \neq \phi,$
- $((x+y)\cdot z) \cap (x\cdot z + y\cdot z) \neq \phi.$

Definition 2.6 [2] Let R be an H_v-ring. A nonempty subset I of R is called a left (resp., right) H_v-ideal if the following axioms hold:

(i) $(I,+)$ is an H_v-subgroup of $(R,+)$, (ii) $R \cdot I \subseteq I$ (resp., $I \cdot R \subseteq I$).

Definition 2.7 [2] Let $(R, +, \cdot)$ be an H_v-ring and μ a fuzzy subset of R. Then μ is said to be a left (resp., right) fuzzy H_v -ideal of \tilde{R} if the following axioms hold: (1) min{ $\mu(x), \mu(y)$ } \leq inf{ $\mu(z): z \in x + y$ } $\forall x, y \in R$,

(2) For all $x, a \in \mathbb{R}$ there exists $y \in \mathbb{R}$ such that $x \in a + y$ and $\min\{\mu(a), \mu(x)\} \leq \mu(y)$, (3) For all $x, a \in \mathbb{R}$ there exists $z \in \mathbb{R}$ such that $x \in z + a$ and $\min\{\mu(a), \mu(x)\} \leq \mu(z)$, $(4)\mu(y) \le \inf\{\mu(z): z \in x \cdot y\}$ respectively $\mu(x) \le \inf\{\mu(z): z \in x \cdot y\}$ $\forall x, y \in R$.

Definition 2.8 [2] An intuitionistic fuzzy set $A = \{\mu_A, \lambda_A\}$ in R is called a left (resp., right) intuitionistic fuzzy H_videal of *R* if following axioms hold:

 (1) min $\{\mu_A(x), \mu_A(y)\} \le \inf\{\mu_A(z) : z \in x + y\} \forall x, y \in R$, (2) For all $x, a \in R$ there exists $y, z \in R$ such that $x \in (a + y) \cap (z + a)$ and $\min\{\mu_A(a), \mu_A(x)\} \leq \min\{\mu_A(y), \mu_A(z)\},$ $(3)\mu_A(y) \leq \inf\{\mu_A(z): z \in x \cdot y\}$ respectively $\mu_A(x) \leq \inf\{\mu_A(z): z \in x \cdot y\}$ $\forall x, y \in R$, (4) sup $\{\lambda_4(z): z \in x + y\} \le \max\{\lambda_4(x), \mu_4(y)\} \forall x, y \in R$, (5) For all $x, a \in R$ there exists $y, z \in R$ such such that $x \in (a+y) \cap (z+a)$ and $\max\{\lambda_A(y), \lambda_A(z)\} \leq \max\{\lambda_A(a), \lambda_A(x)\},$ (6) sup $\{\lambda_A(z): z \in x \cdot y\} \leq \lambda_A(y)$ respectively $\sup \{\lambda_A(z): z \in x \cdot y\} \leq \lambda_A(x) \quad \forall x, y \in R$.

Definition 2.12 [17] A nonempty set M is called an H_v -module over an H_v -ring R if $(M, +)$ is a weak commutative H_v -group and there exists a map

$$
\therefore R \times M \to \wp^*(M), (r, x) \to r.x \quad \text{Such} \quad \text{that} \quad \text{for} \quad \text{all} \quad a, b \in R \quad \text{and} \quad x, y \in M, \quad \text{we have}
$$
\n
$$
(a.(x+y)) \cap (a.x+a.y) \neq \emptyset,
$$
\n
$$
((x+y)a) \cap (xa+y.a) \neq \emptyset,
$$
\n
$$
(a.(b.x)) \cap ((ab).x) \neq \emptyset.
$$

Note that by using fuzzy sets, we can consider the structure of H_v -module on any ordinary module which is a generalization of a module.

Definition 2.13 [12] A fuzzy set μ in M is called a fuzzy H_v -submodule of M if (1) min{ $\mu(x), \mu(y)$ } \leq inf{ $\mu(z): z \in x + y$ } $\forall x, y \in M$,

 (2) For all $x, a \in M$ there exists $y, z \in M$ such that $x \in (a+y) \cap (z+a)$ and

 $\min\{\mu(a), \mu(x)\} \leq \inf\{\mu(y), \mu(z)\},\$

 $(3) \mu(y) \le \inf\{ \mu(z) : z \in x \cdot y \}$ for all $y \in M$ and $x \in R$.

Definition 2.14 [16] An intuitionistic fuzzy set $A = \{\mu_A, \lambda_A\}$ in an H_v –module M over an H_v –ring R is said to be an intuitionistic fuzzy H_v -submodule of M if the following axioms hold:

 $(1) \min\{\mu_A(x), \mu_A(y)\} \leq \inf\{\mu_A(z) : z \in x + y\}$ and $\max\{\lambda_A(x), \lambda_A(y)\} \geq \sup\{\lambda_A(z) : z \in x + y\}$ for all $x, y \in M$,

(2) For all $x, a \in M$ there exists $y \in M$ such that $x \in a + y$ and $\min{\{\mu_A(a), \mu_A(x)\}} \leq \mu_A(y)$ and $\max\{\lambda_A(a), \lambda_A(x)\} \geq \lambda_A(y)$,

(3) For all $x, a \in M$ there exists $z \in M$ such that $x \in z + a$ and $\min{\{\mu_A(a), \mu_A(x)\}} \leq \mu_A(z)$ and $\max\{\lambda_A(a), \lambda_A(x)\} \geq \lambda_A(z)$,

 $(4)\mu_A(x) \leq \inf\{\mu_A(z): z \in r \cdot x\}$ and $\lambda_A(x) \geq \sup\{\lambda_A(z): z \in r \cdot x\}$ for all $x \in M$ and $r \in R$.

Definition 2.9 [12] Let μ be a fuzzy subset of R. If there exist a $t \in (0,1]$ and an $x \in R$ such that

$$
\mu(y) = \begin{cases} t & \text{if } y = x \\ 0 & \text{if } y \neq x \end{cases}
$$

Then μ is called a fuzzy point with support χ and value t and is denoted by x_t .

Definition 2.10 [12] Let μ be a fuzzy subset of R and x_t be a fuzzy point. (1) If $\mu(x) \ge t$, then we say x_t belongs to μ , and write $x_t \in \mu$.

(2) If $\mu(x)+t>1$, then we say x_t is quasi-coincident with μ , and write $x_t q \mu$.

- $(3)x_i \in \bigvee q\mu \Leftrightarrow x_i \in \mu \text{ or } x_i q\mu.$
- $(4)x \in \mathbb{A} q\mu \Leftrightarrow x \in \mu$ and $x \in \mathbb{A} q\mu$.

In what follows, unless otherwise specified, α and β will denote any one of \in , $q, \in \vee q$ or $\in \wedge q$ with $\alpha \neq \in \wedge q$, which was introduced by Bhakat and Das [9].

By an interval number \tilde{a} we mean an interval $\left[a^-, a^+\right]$ where $0 \le a^- \le a^+ \le 1$. The set of all interval numbers is denoted by $D[0,1]$. We also identify the interval $\big[a,a\big]$ by the number $a\in\big[0,1\big].$ For the interval numbers $\tilde{a}_i = \left[a_i, a_i^+\right] \in D\left[0,1\right], i \in I$, we define $\max\left\{\tilde{a}_{i}, \tilde{b}_{i}\right\} = \bigr\lceil\max\left(a_{i}^{-}, b_{i}^{-}\right)\bigr\rceil,\max\left(a_{i}^{+}, b_{i}^{+}\right)\bigr\rceil,$ $\min\left\{\tilde{a}_{i}, \tilde{b}_{i}\right\} = \Bigr\lceil\min\left(a_{i}^{-}, b_{i}^{-}\right), \min\left(a_{i}^{+}, b_{i}^{+}\right)\Bigr\rceil,$ $\inf \tilde{a}_i = \bigg|\bigwedge_{i \in I} a_i^-, \bigwedge_{i \in I} a_i^+ \bigg|, \sup \tilde{a}_i = \bigg|\bigvee_{i \in I} a_i^-, \bigvee_{i \in I} a_i^+ \bigg|$ $=\left[\bigwedge_{i\in I} a_i^-, \bigwedge_{i\in I} a_i^+\right], \sup \tilde{a}_i = \left[\bigvee_{i\in I} a_i^-, \bigvee_{i\in I} a_i^+\right]$ $\left[\max\left(a_{i}^{-}, b_{i}^{-}\right),\max\left(a_{i}^{+}, b_{i}^{+}\right)\right]$ $\left[\, \min\!\left(a_i^-, b_i^-\right)\!, \min\!\left(a_i^+, b_i^+\right)\right]$ and put $(1)\tilde{a}_1 \leq \tilde{a}_2 \Leftrightarrow a_1^- \leq a_2^-$ and $a_1^+ \leq a_2^+$, $(2)\tilde{a}_1 = \tilde{a}_2 \Leftrightarrow a_1^- = a_2^-$ and $a_1^+ = a_2^+$, $(3)\tilde{a}_1 < \tilde{a}_2 \Leftrightarrow \tilde{a}_1 \le \tilde{a}_2$ and $\tilde{a}_1 \ne \tilde{a}_2$, $(4) k\tilde{a} = \begin{bmatrix} ka^{-}, ka^{+} \end{bmatrix}$, whenever $0 \le k \le 1$. It is clear that $\left(D[0,1], \leq, \vee, \wedge\right)$ is a complete lattice with $0 = [0,0]$ as least element and $1 = [1,1]$ as greatest element. By an interval valued fuzzy set F on X we mean the set $F = \{(x, \lfloor \mu_F^-(x), \mu_F^+(x) \rfloor) : x \in X\}$. Where μ_F^- and μ_F^+ are fuzzy subsets of X such that $\mu_F^-(x) \leq \mu_F^+(x)$ for all $x \in X$. Put $\tilde{\mu}_F(x) = [\mu_F^-(x), \mu_F^+(x)]$. Then $F = \left\{ \left(x, \tilde{\mu}_F(x) \right) : x \in X \right\}$, where $\tilde{\mu}_F : X \to D[0,1].$

If A, B are two interval valued fuzzy subsets of X, then we define

 $A \subseteq B$ if and only if for all $x \in X$, $\mu_A^-(x) \le \mu_B^-(x)$ and $\mu_A^+(x) \le \mu_B^+(x)$,

 $A = B$ if and only if for all $x \in X$, $\mu_A^-(x) = \mu_B^-(x)$ and $\mu_A^+(x) = \mu_B^+(x)$.

Also, the union, intersection and complement are defined as follows: let A; B be two interval valued fuzzy subsets of X, then

$$
A \cup B = \left\{ \left(x, \left[\max \left\{ \mu_A^-(x), \mu_B^-(x) \right\}, \max \left\{ \mu_A^+(x), \mu_B^+(x) \right\} \right] \right) : x \in X \right\},\
$$

$$
A \cap B = \left\{ \left(x, \left[\min \left\{ \mu_A^-(x), \mu_B^-(x) \right\}, \min \left\{ \mu_A^+(x), \mu_B^+(x) \right\} \right] \right) : x \in X \right\},\
$$

$$
A^c = \left\{ \left(x, \left[\left\{ 1 - \mu_A^-(x), 1 - \mu_A^+(x) \right\} \right] \right) : x \in X \right\}.
$$

According to Atanassov an interval valued intuitionistic fuzzy set on *X* is defined as an object of the form $A = \{(x, \tilde{\mu}_A(x), \tilde{\lambda}_A(x)) : x \in X\}$, where $\tilde{\mu}_A(x)$ and $\tilde{\lambda}_A(x)$ are interval valued fuzzy sets on X such that $0 \leq \sup \tilde{\mu}_A(x) + \sup \tilde{\lambda}_A(x) \leq 1$ for all $x \in X$.

For the sake of simplicity, in the following such interval valued intuitionistic fuzzy sets will be denoted by $A = (\tilde{\mu}_A, \tilde{\lambda}_A).$

Interval Valued Intuitionistic (α, β) -fuzzy Hv-submodules

In this section we give the definition of interval valued intuitionistic (α,β) -fuzzy Hv-submodule and prove some related results.

Definition 3.1 An interval valued intuitionistic fuzzy set $A = \{\tilde{\mu}_A, \lambda_A\}$ in M is called an interval valued intuitionistic (α, β) -fuzzy H_{ν} -submodule of M if for all $t, r \in (0,1]$, $(1) \forall x, y \in M$, $x_i \alpha \tilde{\mu}_A$, $y_r \alpha \tilde{\mu}_A \Rightarrow z_{t \wedge r} \beta \tilde{\mu}_A$ for all $z \in x + y$, $(2)\forall x, a \in M$, $x_i \alpha \tilde{\mu}_A, a_r \alpha \tilde{\mu}_A \Rightarrow (y \wedge z)_{t \wedge r} \beta \tilde{\mu}_A$ for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$, $(3) \forall x, y \in M, \quad y_i \alpha \tilde{\mu}_A \Rightarrow z_i \beta \tilde{\mu}_A \text{ for all } z \in x \cdot y,$ $(4) \forall x, y \in M$, $x_i \overline{\alpha} \overline{\lambda}_A$, $y_r \overline{\alpha} \overline{\lambda}_A \Rightarrow z_{\tau \wedge r} \overline{\beta} \overline{\lambda}_A$ for all $z \in x + y$, $(5)\forall x, a \in M$, $x_i\overline{a}\overline{\lambda}_A$, $a_i\overline{a}\overline{\lambda}_A \Rightarrow (y \wedge z)_{i \wedge r}$ $\overline{\beta}\overline{\lambda}_A$ for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$,

 $(6) \forall x, y \in M, \quad y_i \overline{\alpha} \overline{\lambda}_A \Rightarrow z_{t \wedge r} \overline{\beta} \overline{\lambda}_A$ for all $z \in x \cdot y$.

Lemma 3.2 Let $A = {\tilde{\mu}_A, \lambda_A}$ be an interval valued intuitionistic fuzzy set in M. Then for all $x \in M$ and $r \in (0,1]$, we have

$$
(1) x_i q \tilde{\mu}_A \Leftrightarrow x_i \in \tilde{\mu}_A^c.
$$

$$
(2) x_i \in \vee q \tilde{\mu}_A \Leftrightarrow x_i \in \wedge q \tilde{\mu}_A^c.
$$

Proof. (1) Let $x \in M$ and $r \in (0,1]$. Then, we have

$$
x_t q \tilde{\mu}_A \Leftrightarrow \tilde{\mu}_A(x) + t > 1
$$

\n
$$
\Leftrightarrow 1 - \tilde{\mu}_A(x) < t
$$

\n
$$
\Leftrightarrow \tilde{\mu}_A^c(x) < t
$$

\n
$$
\Leftrightarrow x_t \equiv \tilde{\mu}_A^c.
$$

(2) Let $x \in M$ and $r \in (0,1]$. Then, we have

$$
x_{t} \in \bigtriangledown q\tilde{\mu}_{A} \Leftrightarrow x_{t} \in \tilde{\mu}_{A} \text{ or } x_{t}q\tilde{\mu}_{A}
$$

\n
$$
\Leftrightarrow \tilde{\mu}_{A}(x) \geq t \text{ or } \tilde{\mu}_{A}(x)+t>1
$$

\n
$$
\Leftrightarrow 1-\tilde{\mu}_{A}^{c}(x) \geq t \text{ or } 1-\tilde{\mu}_{A}^{c}(x)+t>1
$$

\n
$$
\Leftrightarrow x_{t}\overline{q}\tilde{\mu}_{A}^{c} \text{ or } x_{t} \in \tilde{\mu}_{A}^{c}
$$

\n
$$
\Leftrightarrow x_{t} \in \bigtriangledown q\tilde{\mu}_{A}^{c}.
$$

Theorem 3.3 If $A = {\tilde{\mu}_A, \tilde{\lambda}_A}$ is an interval valued intuitionistic (ϵ, ϵ) -fuzzy H_v -submodule of M then ${A} = {\tilde{\mu}_A, \lambda_A}$ is an interval valued intuitionistic fuzzy H_v -submodule of M.

Proof Condition (1). Let $x, y \in M$ and $\tilde{\mu}_A(x) \wedge \tilde{\mu}_A(y) = t$. Then $x_t, y_t \in \tilde{\mu}_A$. By condition (1) of definition 3.1, we have $z_t \in \tilde{\mu}_A$, $\forall z \in x + y$, and so $\tilde{\mu}_A(z) \ge t$, $\forall z \in x + y$. Consequently $\tilde{\mu}_A(x) \wedge \tilde{\mu}_A(y) = t \leq \bigwedge_{z \in x + y} \tilde{\mu}_A(z)$ $\mu_A(x) \wedge \mu_A(y) = t \leq \bigwedge \mu_A(z)$ $f \wedge \widetilde{\mu}_A(y) = t \leq \bigwedge_{z \in x+y} \widetilde{\mu}_A(z)$ for all $x, y \in M$.

Condition (2). Now let $x, a \in M$ and $\tilde{\mu}_A(x) \wedge \tilde{\mu}_A(a) = t$. Then $x_t, a_t \in \tilde{\mu}_A$. It follows from condition (2) of definition 3.1 that $(y \wedge z)_t \in \tilde{\mu}_A$, for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$. Thus $y_t, z_t \in \tilde{\mu}_A$, for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$. So, for all $x, a \in M$, there exist $y, z \in M$ such that $x \in (a+y) \cap (z+a)$ and $\tilde{\mu}_A(x) \wedge \tilde{\mu}_A(a) = t \leq \tilde{\mu}_A(y) \wedge \tilde{\mu}_A(z)$.

Condition (3). Let $x, y \in M$ and $\tilde{\mu}_A(y) = t$. Thus $y_t \in \tilde{\mu}_A$. From condition (3) of definition 3.1, we have $z_t \in \tilde{\mu}_A$ for all $z \in x \cdot y$, and so $\tilde{\mu}_A(z) \ge t$ for all $z \in x \cdot y$. This proves that $\tilde{\mu}_A(y) = t \le \bigwedge_{z \in x \cdot y} \tilde{\mu}_A(z)$ $= t \leq \wedge \tilde{\mu}_{A}(z)$ for all $x, y \in M$.

Condition (4). Let $x, y \in M$ and $\lambda_A(x) \vee \lambda_A(y) = s$. If $s = 1$, then $\lambda_A(z) \leq 1 = s$ for all $z \in x + y$. It is easy to see that $\bigvee_{z \in x \cdot y} \tilde{\lambda}_A(z) \leq \tilde{\lambda}_A(x) \vee \tilde{\lambda}_A(y)$ for all $x, y \in M$. If $s < 1$ there exists a $t \in (0,1]$ such that $\tilde{\lambda}_{A}(x) \vee \tilde{\lambda}_{A}(y) = s < t$. Then x_{t} , $y_{t} \in \tilde{\lambda}_{A}$. By condition (4) of definition 3.1, we have $z_{t} \in \tilde{\lambda}_{A}$, $\forall z \in x + y$ and so $\tilde{\lambda}_A(z) < t$. Consequently $\underset{z \in x, y}{\vee} \tilde{\lambda}_A(z) \leq \tilde{\lambda}_A(x) \vee \tilde{\lambda}_A(y)$ for all $x, y \in M$.

Condition (5). Now let $x, a \in M$ and $\lambda_A(x) \vee \lambda_A(a) = s$. If $s < 1$, there exists a $t \in (0,1]$ such that $\lambda_A(x) \vee \lambda_A(a) = s < t$. Then $x_t, a_t \in \lambda_A$. By condition (5) of definition 3.1, we have $(y \wedge z)_t \in \lambda_A$ for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$. Hence $\lambda_A(y) < t$ and $\lambda_A(z) < t$. Thus $\lambda_A(y) \vee \lambda_A(z) < t$. This implies that for all $x, a \in M$, there exist $y, z \in M$ such that $x \in (a+y) \cap (z+a)$ and $\tilde{\lambda}_A(y) \leq \tilde{\lambda}_A(x) \vee \tilde{\lambda}_A(a)$. If $s = 1$ the proof is obvious.

Condition (6). Let $x, y \in M$ and $\lambda_A(y) = s$. If $s < 1$, there exists a $t \in (0,1]$ such that $\lambda_A(y) = s < t$. Thus $y_t \in \lambda_A$. From condition (6) of definition 3.1, we have $z_t \in \lambda_A$ for all $z \in x \cdot y$, and so $\lambda_A(z) < t$ for all $z \in x \cdot y$. Then $\tilde{\lambda}_A(z) < \tilde{\lambda}_A(y)$. This proves that $\bigvee_{z \in x \cdot y} \tilde{\lambda}_A(z) \leq \tilde{\lambda}_A(y)$, for all $x, y \in R$. If $s = 1$ the proof is obvious.

Theorem 3.4 If $A = {\tilde{\mu}_A, \tilde{\lambda}_A}$ is an intuitionistic $(\epsilon, \epsilon \vee q)$ and $(\epsilon, \epsilon \wedge q)$ -fuzzy H_v -submodule of M then ${A} = {\tilde{\mu}_A, \lambda_A}$ is an intuitionistic fuzzy H_v -submodule of M. **Proof** The proof is similar to the proof of Theorem 3.3.

Theorem 3.5 If $\Box A = \{ \tilde{\mu}_A, \tilde{\mu}_A^c \}$ is an interval valued intuitionistic (α, β) -fuzzy H_v -submodule of M if and only if $\Box A = \{ \tilde{\mu}_A, \tilde{\mu}_A^c \}$ is an interval valued intuitionistic (α', β') -fuzzy H_ν -submodule of M, where $\alpha \in \{\in, q\}$ and $\beta \in {\epsilon, q, \epsilon \vee q, \epsilon \wedge q}.$

Proof We only prove the case of $(\alpha, \beta) = (\epsilon, \epsilon \vee q)$. The others are analogous. Let $\Box A = \{ \tilde{\mu}_A, \tilde{\mu}_A^c \}$ be an intuitionistic $(\in, \in \vee q)$ -fuzzy H_{ν} -submodule of M.

Condition (1). Let $x, y \in M$ and $t, r \in (0,1]$ be such that $x_t, y_r q \tilde{\mu}_A$. It follows from Lemma 3.2 that $x_t, y_r \in \tilde{\mu}_A^c$. Since $\tilde{\mu}_A^c$ is an anti $(\epsilon, \epsilon \vee q)$ -fuzzy H_v -submodule of M. Thus by condition (4) of definition 3.1, we have $z_{t\wedge r} \in \vee q\tilde{\mu}_{A}^{c}$ for all $z \in x + y$. By Lemma 3.2, this is equivalence with $z_{t\wedge r} \in \wedge q\tilde{\mu}_{A}$ for all $z \in x + y$. Thus condition of (1) of definition 3.1 is valid.

Condition (2). Suppose that $x, a \in M$ and $t, r \in (0,1]$ be such that $x_t, a_r q \tilde{\mu}_A$. By Lemma 3.2, we have $x_t, a_r q \tilde{\mu}_A$ iff $x_t, a_r \in \tilde{\mu}_A^c$. By hypotheses, $\tilde{\mu}_A^c$ is an anti $(\in, \in \vee q)$ -fuzzy H_v -submodule of M. Thus by condition (5) of definition 3.1, we have $(y \wedge z)_{t \wedge r} \in \vee q\tilde{\mu}_A^c$, for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$. This is equivalence with $y_{t\wedge r} \in \bigtriangledown q \tilde{\mu}_A^c$ and $z_{t\wedge r} \in \bigtriangledown q \tilde{\mu}_A^c$, for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$. By Lemma 3.2, it is easy to see that $y_{t \wedge r} \in \wedge q\tilde{\mu}_A$ and $z_{t \wedge r} \in \wedge q\tilde{\mu}_A$, for some $y, z \in M$ with $x \in (a + y) \cap (z + a)$ if and only if $(y \wedge z)_{t \wedge r} \in \wedge q\tilde{\mu}_A$, for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$. Thus condition of (2) of definition 3.1 is valid.

Condition (3). Let $x, y \in M$ and $t \in (0, 1]$ be such that $y_t q \tilde{\mu}_A$. It follows from Lemma 3.2 that $y_t \in \tilde{\mu}_A^c$. Since $A = \{ \tilde{\mu}_A, \tilde{\mu}_A^c \}$ is an intuitionistic $(\epsilon, \epsilon \vee q)$ -fuzzy H_v -submodule of M. Thus by condition (6) of definition 3.1, we have $z_t \in \vee q\tilde{\mu}_A^c$ for all $z \in x \cdot y$. It is equivalence with $z_t \in \wedge q\tilde{\mu}_A$ for all $z \in x \cdot y$. Which verify conditions (3) of definition 3.1.

Condition (4). Let $x, y \in M$ and $t, r \in (0, 1]$ be such that $x_t, y_r \overline{q} \tilde{\mu}_A^c$. It follows from Lemma 3.2 that $x_t, y_r \overline{q} \tilde{\mu}_A^c$ iff $x_t, y_t \in \tilde{\mu}_A$. Since $\Box A = \{ \tilde{\mu}_A, \tilde{\mu}_A^c \}$ is an intuitionistic $(\epsilon, \epsilon \vee q)$ -fuzzy H_v -submodule of M. Thus by

condition (1) of definition 3.1, we have $z_{t \wedge r} \in \vee q\tilde{\mu}_A$ for all $z \in x + y$. By Lemma 3.2, this is equivalence with $z_{t \wedge r} \in \wedge q \tilde{\mu}_{A}^{c}$ for all $z \in x + y$. Thus condition of (4) of definition 3.1 is valid.

Condition (5). Suppose that $x, a \in M$ and $t, r \in (0, 1]$ be such that $x_t, a_t \overline{q} \tilde{\mu}_A^c$. This is equivalence with $x_t, a_r \in \tilde{\mu}_A$. By hypotheses, $\tilde{\mu}_A$ is an $(\epsilon, \epsilon \vee q)$ -fuzzy H_v -submodule of M. Thus by condition (2) of definition 3.1, we have $(y \wedge z)_{t \wedge r} \in \vee q\tilde{\mu}_A$, for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$, and so $y_{t \wedge r} \in \vee q\tilde{\mu}_A$, and $z_{t\wedge r} \in \vee q\tilde{\mu}_A$, for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$. It follows from Lemma 3.2 that $y_{t\wedge r} \in \wedge q\tilde{\mu}_A^c$ and $z_{t\wedge r} \in \wedge q\tilde{\mu}_{A}^{c}$ for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$ if and only if $(y \wedge z)_{t\wedge r} \in \wedge q\tilde{\mu}_{A}^{c}$, for some $y, z \in M$ with $x \in (a + y) \cap (z + a)$. Thus condition of (5) of definition 3.2 is valid.

Condition (6). Let $x, y \in M$ and $t \in (0, 1]$ be such that $y_t \overline{q} \tilde{\mu}_A^c$. Then, we have $y_t \in \tilde{\mu}_A$. Since $\Box A = \{ \tilde{\mu}_A, \tilde{\mu}_A^c \}$ is an interval valued intuitionistic $(\epsilon, \epsilon \vee q)$ -fuzzy H_{ν} -submodule of M. Thus by condition (3) of definition 3.1, we have $z_t \in \vee q\tilde{\mu}_A$ for all $z \in x \cdot y$. It is equivalence with $z_t \in \wedge q\tilde{\mu}_A^c$ for all $z \in x \cdot y$. Which verify conditions (6) of definition 3.1.

Theorem 3.6 If $\Diamond A = \left\{ \begin{array}{c} \tilde{\lambda}_A^c, \tilde{\lambda}_A \end{array} \right\}$ is an interval valued intuitionistic (α, β) -fuzzy H_v -submodule of M if and only if $\Diamond A = \left\{ \begin{array}{l} \tilde{\lambda}_A^c, \tilde{\lambda}_A \end{array} \right\}$ is an interval valued intuitionistic (α', β') -fuzzy H_ν -submodule of M, where $\alpha \in \{\in, q\}$ and $\beta \in {\epsilon, q, \epsilon \vee q, \epsilon \wedge q}.$

Proof The proof is similar to the proof of Theorem 3.5.

Theorem 3.7 If $A = \{ \tilde{\mu}_A, \tilde{\lambda}_A \}$ is an interval valued intuitionistic (α, β) -fuzzy H_ν -submodule of M if and only if $\tilde{\mu}_A$ is an (α, β) -fuzzy H_v -submodule of M and λ_A^c is an (α', β') -fuzzy H_v -submodule of M, where $\alpha \in \{\in, q\}$ and $\beta \in \{\in, q, \in \vee q, \in \wedge q\}$.

Proof We only prove the case of $(\alpha, \beta) = (\epsilon, \epsilon \vee q)$. The others are analogous. It is sufficient to show that, $\hat{\lambda}_A^c$ is an $(q, \in \wedge q)$ -fuzzy H_v -submodule of M if and only if λ_A is an anti $(\in \in \vee q)$ -fuzzy H_v -submodule of M. This is true, because $x_i q \tilde{\lambda}_A \Leftrightarrow x_i \in \tilde{\lambda}_A^c$ and $x_i \in \wedge q \tilde{\lambda}_A \Leftrightarrow x_i \in \vee q \tilde{\lambda}_A^c$, $\forall x \in M$ and $t \in (0,1]$.

REFERENCES

- [1] B. Davvaz, A brief survey of the theory of H*v*-structures, in: Proceedings of the 8th International Congress on AHA, Greece 2002, Spanids Press, 2003, pp. 39-70.
- [2] B. Davvaz, W. A. Dudek, Intuitionistic fuzzy H*v*–ideals, International Journal of Mathematics and Mathematical Sciences, Volume 2006, Pages 1-11.
- [3] B. Davvaz, W. A. Dudek, Y. B. Jun, Intuitionistic fuzzy H*v*–submodules, Inform. Sci. 176 (2006) 285-300.
- [4] F. Marty, Sur une generalization de la notion de group, in: 8th congress Math.Skandenaves, Stockholm, 1934, pp. 45-49.
- [5] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.
- [6] K. T. Atanassov, Intuitionistic fuzzy sets: Theory and Applications, Studies in fuzziness and soft computing, 35, Heidelberg, New York, Physica-Verl., 1999.

- [7] K. T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61, (1994) 137-142.
- [8] L. A. Zadeh, Fuzzy sets, Inform. And Control 8 (1965) 338-353.
- [9] M. Asghari-Larimi, Intuitionistic (α, β)-Fuzzy H*v*-Submodules, J. Math. Comput. Sci. 2 (2012), No. 1, 1-14.
- [10]P. M. Pu and Y. M. Liu, Fuzzy topology: Neighourhood structure of a fuzzy point and Moore-Smooth convergence, J. Math. Anal. Appl., 76 (1980) 571-599.
- [11] S. K. Bhakat, P. Das, $(\in, \in \vee q)$ -fuzzy subgroups, Fuzzy Sets and Systems, 80 (1996) 359-368.
- [12]S. K. Bhakat, P. Das, On the definition of a fuzzy subgroup, Fuzzy Sets and Systems, 51 (1992) 235-241.
- [13]T. Vougiouklis, A new class of hyperstructures, J. Combin. Inf. System Sci., to appear.
- [14]T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, Florida, 1994.
- [15]X. H. Yuan , H. X. Li and E. S. Lee, On the definition of the intuitionistic fuzzy subgroups, Computers and Mathematics with Applications, 59 (2010) 3117-3129.
- [16] J. Zhan, B. Davvaz, P. Corsini, On Intuitionistic (S, T) -fuzzy H_{ν} -submodules of Hv-Modules, Southeast Asian Bulletin of Mathematics 36 (2012) 589-601.
- [17]B. Davvaz, W. A. Dudek, Intuitionistic fuzzy H*v*–ideals, International Journal of Mathematics and Mathematical Sciences, 2006, 1-11.